Solutions to Problem 1.

a. $\mathrm{M} / \mathrm{M} / 12$ with $\lambda=5$ customers / minute and $\mu=\frac{1}{2}$ customers / minute
b. $\rho=\frac{\lambda}{s \mu}=\frac{5}{6} \approx 0.8333$
c. We want π_{0} :

$$
\pi_{0}=\left[\left(\sum_{j=0}^{12} \frac{\left(\frac{5}{6}(12)\right)^{j}}{j!}\right)+\frac{12^{12}\left(\frac{5}{6}\right)^{13}}{12!\left(1-\frac{5}{6}\right)}\right]^{-1} \approx 0.000036
$$

d. We want w_{q} :

$$
\begin{aligned}
& \pi_{12}=\frac{10^{12}}{12!} \pi_{0} \approx 0.0749 \\
\Rightarrow & \ell_{q}=\frac{\pi_{12}\left(\frac{5}{6}\right)}{\left(1-\frac{5}{6}\right)^{2}} \approx 2.2469 \text { customers } \\
\Rightarrow & w_{q}=\frac{\ell_{q}}{\lambda} \approx 0.4494 \text { minutes }
\end{aligned}
$$

Solutions to Problem 2.

a. We approximate both the one- and two-employee systems as $\mathrm{M} / \mathrm{M} / 1$ queues.

- One-employee system. $\lambda=24$ customers per hour, $\mu=30$ customers per hour $\Rightarrow \rho=0.8$

$$
\begin{aligned}
\pi_{0} & =\left[\left(\sum_{j=0}^{1} \frac{(0.8)^{j}}{j!}\right)+\frac{(0.8)^{2}}{(1-0.8)}\right]^{-1}=0.2 \\
\pi_{1} & =(0.8)(0.2)=0.16 \\
\ell_{q} & =\frac{0.16(0.8)}{(1-0.8)^{2}}=3.2 \text { customers } \\
\ell & =3.2+0.8=4 \text { customers } \\
\Rightarrow w_{q} & =\frac{3.2}{24} \approx 0.1333 \text { hours } \\
\Rightarrow w & =\frac{4}{24} \approx 0.1667 \text { hours }
\end{aligned}
$$

- Two-employee system. $\lambda=24$ customers per hour, $\mu=48$ customers per hour $\Rightarrow \rho=0.5$

$$
\begin{aligned}
\pi_{0} & =\left[\left(\sum_{j=0}^{1} \frac{(0.5)^{j}}{j!}\right)+\frac{(0.5)^{2}}{(1-0.5)}\right]^{-1}=0.5 \\
\pi_{1} & =(0.5)(0.5)=0.25 \\
\ell_{q} & =\frac{0.25(0.5)}{(1-0.5)^{2}}=0.5 \text { customers } \\
\ell & =0.5+0.5=1 \text { customer } \\
\Rightarrow w_{q} & =\frac{0.5}{24} \approx 0.0208 \text { hours } \\
\Rightarrow w & =\frac{1}{24} \approx 0.0417 \text { hours }
\end{aligned}
$$

b. From above:

- One-employee system. $\pi_{0}=0.2$
- Two-employee system. $\pi_{0}=0.5$
c. The fraction of time that the intercom is blocked is $\sum_{j=3}^{\infty} \pi_{j}=1-\pi_{0}-\pi_{1}-\pi_{2}$. We have π_{0} and π_{1} above, we still need π_{2}.
- One-employee system.

$$
\begin{aligned}
\pi_{2} & =(0.8)^{2}(0.2)=0.128 \\
\Rightarrow 1-\pi_{0}-\pi_{1}-\pi_{2} & =1-0.2-0.16-0.128=0.512
\end{aligned}
$$

- Two-employee system.

$$
\begin{aligned}
\pi_{2} & =(0.5)^{2}(0.5)=0.125 \\
\Rightarrow 1-\pi_{0}-\pi_{1}-\pi_{2} & =1-0.5-0.25-0.125=0.125
\end{aligned}
$$

Solutions to Problem 3.

a. Assuming that the interarrival times and service times are exponentially distributed and there is no reneging, we can model this system as a $\mathrm{M} / \mathrm{M} / 2$ queue with $\lambda=20$ calls per hour, and $\mu=20$ calls per hour.
b. To keep up with the calls, we want the largest λ such that

$$
\rho=\frac{\lambda}{2 \mu}<1 \quad \Rightarrow \quad \lambda<2 \mu=40 \text { calls per hour }
$$

So, the largest such $\lambda=40$.
c. We want the largest λ such that

$$
w_{q}=\frac{\ell_{q}}{\lambda}=\frac{\pi_{2} \rho}{\lambda(1-\rho)^{2}} \leq \frac{4}{60} \approx 0.0667 \text { hours }
$$

Using a computer and trial-and-error, the largest such $\lambda \approx 30$.
d. We want the largest λ such that

$$
\sum_{j=8}^{\infty} \pi_{j}=1-\sum_{j=0}^{7} \pi_{j} \leq 0.15
$$

Using a computer and trial-and-error, the largest such $\lambda \approx 31$.
e. We formulate the system with reneging as a birth-death process:

- State space. $\mathcal{M}=\{0,1,2, \ldots\}$

Each state represents the number of customers, including those being served and those on hold.

- Arrival rates.

$$
\lambda_{i}=20 \quad \text { for } i=0,1,2, \ldots
$$

- Service rates. Assuming the time to renege is exponential:

$$
\mu_{i}= \begin{cases}20 i & \text { for } i=1,2 \\ 40+12(i-2) & \text { for } i=3,4, \ldots\end{cases}
$$

